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Fachbereich Physik, Universitat Bremen, 2800 Bremen 33, West Germany 

Received 6 June 1986 

Abstract. We present evidence for irregular behaviour in potential scattering and discuss 
a possible explanation in terms of unstable periodic orbits. 

Trajectories in Hamiltonian systems with bounded energy surface can be identified as 
regular or irregular, depending on their long-time behaviour (Berry 1978). Regular 
trajectories are confined to N-dimensional tori (where N stands for the number of 
degrees of freedom), have discrete spectra and correspond to quasiperiodic motion. 
One finds them in integrable systems and near elliptic islands. Irregular trajectories 
densely fill higher than N-dimensional subsets of the energy surface and have con- 
tinuous spectra. They are typical for stochastic layers. This characterisation of irregular 
trajectories as well as others in terms of Lyapounov exponents, topological and metric 
entropy or symbolic dynamics all require that the motion does not becomes less 
complicated as time goes on. 

These requirements are not met by scattering trajectories. For instance, in potential 
scattering, one finds that asymptotically for large positive and large negative times, 
the particle does not feel the potential anymore and moves along straight lines. Thus, 
with only a finite time in the interaction region, the above measures of chaos predict 
‘simple’ motion and one is inclined to dismiss the possibility of chaos in scattering 
problems (the only reference where we could find this argument in writing is Dragt 
and Finn (1976), but it appears to be commonplace). However, numerical results to 
be reported below suggest that it is meaningful to distinguish between regular and 
irregular behaviour in scattering. The characteristic it has in common with bounded 
chaos is a sensitive dependence on initial conditions. 

The specific system we have studied is given by the Hamiltonian 

The Gaussian factor serves as a convenient cutoff for the potential. Our initial 
conditions are given by the angle under which the particle approaches the potential, 
the energy and the initial distance, all kept fixed for all runs, together with the impact 
parameter b. Figure 1 shows the contour lines of the potential together with the ingoing 
direction. We monitored the cosine of the angle of deflection (scattering angle) and 
the time delay as compared to free motion (Narnhofer and Thirring 1981). 

We call regular scattering the situation usually anticipated in scattering: initially, 
the particle moves along straight lines, then interacts for a finite time and finally heads 
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Figure 1. Equipotential contours for the potential in (1 ) .  Maxima are marked by +, 
minima by - . The contours are equally spaced in energy. The arrow marks the ingoing 
direction for the particle. 

off to infinity, again along straight lines. With only a finite interaction time, well known 
theorems of analysis give a smooth dependence on initial conditions and parameters, 
which is reflected in smooth variations of, for example, the scattering angle upon 
changes in the impact parameter. Slightly more complicated is the case where one has 
asymptotic trapping. Assuming the initial conditions leading to trapping are isolated 
and well separated, we have regular scattering in intervals in between, perhaps with 
singularities at the endpoints. This situation is familiar from scattering by radially 
symmetric potentials, cf Newton (1982) or Goldstein (1980), and will also be considered 
regular. As a preliminary definition, one might call irregular scattering anything more 
complicated. 

An example of what we believe to be evidence for irregular scattering is shown in 
figure 2. The time delay varies smoothly with impact parameter, except for regions 
near b c- -2.0, -0.7, -0.2, 0.4, 1.9. Near each small bump, initial conditions can be 
found such that the time delay diverges. Along with the sharp increase in time delay 
go strong oscillations in the cosine of the scattering angle. Magnifications by a factor 
of 400 x (figure 3) and 20 x (figure 4) reveal a very complicated structure, apparently 
persisting on ever finer scales. The typical feature of these plots are divergences in 
time delay and corresponding oscillations in scattering angle for many values of the 
impact parameter. Since the singularities are so dense, small changes in initial state 
lead to large changes in the final state, a behaviour known as sensitive dependence on 
initial conditions for irregular bound trajectories. 

A qualitative explanation of this behaviour can be given in terms of unstable 
periodic orbits. In the (regular) case of orbiting scattering in radially symmetric 
potentials, one has an unstable periodic orbit at the top of the barrier and the 
asymptotically trapped orbits spiral towards it. In mathematical language, the particle 
moves along the stable manifold of the periodic orbit. Our irregular scattering can 



Letter to the Editor L83 1 

200 00- 

V 

W c 10000- 

0 00 -- 
1 ~ 1 ~ 1 T 1 ~ 1 ~ 1 ' I ' I  

- 4  00 -2 00 0 2 00 4 00 
Impact parameter Impact parameter 

Impact parameter 

Figure 2. Time delay and cosine of the scattering angle as a function of impact parameter 
in the interval b E [-4.0, 4.01. 

now be explained as being due to an infinity of periodic orbits, each with a stable 
manifold extending to infinity, i.e. to the set of ingoing asymptotic states. Whenever 
we cross one of these manifolds, we find a divergence in time delay and oscillations 
in the scattering angle. 

When do  periodic orbits exist? We believe that the methods of Churchill et a1 
(1979), who prove existence of unstable periodic orbits in the Henon-Heiles potential 
above the dissociation threshold, can immediately be applied to our potential. The 
dissociation energy of the bound states is E = 0, which coincides with the minimal 
energy of scattering states. We also have an upper limit due to the finite height of the 
potential barriers in our example. We conclude that irregular scattering can only be 
observed in an energy interval between the dissociation energy of the bound states 
and the maximal height of the potential barrier. 
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Figure 3. Same as figure 2, except 6 E [1.915, 1.9351. Trajectories were integrated up to a 
time delay G200. 

In conclusion, we have presented evidence for irregular behaviour in scattering, 
the characteristic being a sensitive dependence of scattering data on initial state. We 
have proposed an explanation in terms of trapping in unstable periodic orbits. Similar 
behaviour has been found in other potentials and in scattering in a system in 2~ 

hydrodynamics (Manakov and Shchur 1983, Eckhardt and Aref 1986). The extent to 
which this behaviour is analogous to bounded chaos, its relation to hyperbolic points 
and homoclinic oscillations and connections to other scattering problems (Dragt and 
Finn 1976, Moser 1973) is currently under investigation. We expect the Poincare map 
for scattering states introduced by Jung (1986) to be a useful mathematical tool. 

We would like to thank Professors H Aref and P H Richter, and Dr H J Scholz for 
valuable discussions. 
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Figure 4. Same as figure 2, except b g  [1.920, 1.9211. Trajectories were integrated up to a 
time delay s 2 0 0 .  
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